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Mathematics Extension 2 2005

Total marks — 120
Attempt Questions 1- &

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.

(a)

(b)

(©)

(@

(e)

1 x

dx.

Evaluate J
0 1+ ex

By completing the square, find J.——éj—c———— .o
Vx? - 6x+10

Use integration by parts to find leog eXdx.

0
2+x
Use the substitution ¥ =1- x to evaluate dx .
J.__l ‘\/1 -X
@A) Find real numbers a and b such that
452 —5x-1 a bx+1
= +

(x—3)(x2+1) x=3 %241

2
(1) Hence find J.—ij-c——s—;c———l—dx
(x-3)(x*+1)
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Question 2 (15 marks) Use a SEPARATE writing booklet.

(a)

(b)

(c)

G

(e)

Let z=1+i and w=1-2i. Find, in the form x+1iy,

6] w

@) =
w

Sketch the region in the Argand diagram where the inequalities

|z-2+2i|<2 and ———47—c<argz<:g£

hold simultaneously

It is given that 3—i is aroot of P(z)=z>+rz+60, where r is a real number.

(i)  State why 3+i is also a root of P(z).

(ii)  Factorise P(z) over the real numbers.

(i) = Express -2+ 24/3i in modulus-argument form

(i)  Hence evaluate 42+ 2+/3i in the form x +iy.

By applying de Moivre’s theorem and by also expanding {cos6 + isin 6)4 ,
obtain expressions for cos46 in terms of cos@.

L
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Question 3 (15 marks) Use a SEPARATE writing booklet.

(a)

(b)

/(xiﬁ

ke )

3x
2

The diagram shows the graph of f(x)=

(1) Write down the equations of all the asymptotes.

Draw separate one-third page sketches of the graphs of the following:

P
(ll) y—f(x)

Gi) y=s(|x|)

v) ¥y =f(x)

Let o, B and ¥ be the roots of x> +3x%+4=0.
)] Find the polynomial equation whose roots are o 2, B 2 and Y 2,
(ii)  Find a3ﬁy+aﬂ3y+aﬁy3.

Question 3 continues on page 5

i 4
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Question 3 continued
(c) )] If a>b>0,onasketch of the curve y= Va? - x* shade the region -1
a
represented by the definite integral J a® - x*dx.
b
(ii) By using your diagram, or otherwise, show that | 3
5=, a b b7 2
J- a® -—'x2dx=—cos"1(—)—— a®-b?.
b 2 a) 2

End of Question 3
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Question 4 (15 marks) Use a SEPARATE writing booklet.

(a) Find the equation of the normal to the curve defined by x4+ 3xy— y2 +9=0 3
at the point (—1,2).

(b)

0 x

The pointé P( cp,i) and Q( cq,—c—), P # g, lie on the same branch of the
4 9

hyperbola xy = c?.
The tangents at P and Q meet at the point 7.

@) Show that the equation of the tangent to the hyperbola at Qis 2
x+ q2 y=2cq
.. . 2¢cpg  2c
(i1)  Show that T has coordinates , . - 2
p+tq ptgq

(i)  If P and Q move so that pq = k, a constant, show that the locus of T

is a straight line and give its equation in terms of k.
Clear! N skrale AV\\D res‘\’f"\C* ions on tle loecus,

Question 4 continues on page 7
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Question 4 continued

(c)

The vertices of an acute-angled triangle ABC lie on a circle. The
perpendiculars from 4, B and C meet BC,ACandABatD,Eand F .
respectively. _

The perpendiculars AD, BE and CF are produced to meet the circle at 0, R
and S respectively. :

) Using AAEB, state the relationship between £EAB and ZLEBA, 1
giving reasons.

(i)  Prove that ZABE = LACF. 1
(iii)  Prove that AQ bisects ZLROS. 2

(iv)  Prove that the points £, F, B and C are concyclic. 1

End of Question 4



Mathematics Extension 2 2005
Marks

Question 5 (15 marks) Use a SEPARATE writing booklet.
4 is rotated about the 3.

(a) Theregionboundedby 0<x<2,0<y< 4x* - x
y-axis to form a solid.

Use the method of cylindrical shells to find the volume of the solid.

®) z= 2(cosl£2 + 1'sin%) and z =2/ are two complex numbers.

. —_— —_—
(1) Onan Argand diagram draw the vectors O and OQ torepresent z and z, 5
respectively. Also draw the vectors representing z +2z and z — z. !

(ii) Find the exact values of arg(q + %) and arg(zz - 4). | 5

{
(c)i) Showthat f(x)=xv4-x? isan odd function. 1
| . 2
f ~ (ii) Hence evaluate _[2 (x- 1)\/ 4- xzdx 2

| 3

! (d)(i) Use the substitution «= Z-x to show that |

‘ 9 %

P 4 B 4 ln 2 &
! 2
(ii) Hence find the exact value of J In(1+tanx) &
(1}

End of Question §
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Question 6 (15 marks) Use a SEPARATE writing booklet.

(a) The base of a solid is the region in the xy plane bounded by the circle

x% + y2 = 9. Each cross-section perpendicular to the x-axis is a square.

y A
X%+ y2 =9 W
>
0 }/ x
6] Show that the area of the square cross-section at x = k, where
3<k<3,is 4(9-k2) 1
(i)  Hence find the volume of the solid. 2
(b) YA =2
e

T~

The point P(acos8,bsin6) lies on the ellipse £—2— + %5 =1.
a

S is the focus (ae,0).

. . . a
M the point where the tangent at P cuts the directrix, x=—.

e
() Show that the equation of the tangent to the ellipse at P is 2
xcosf@ ysinf
+ =1
a b

—cosf '

(1) Show that M has coordinates (2,2—(6—79—0—8—)) . 1
e  esin0

(iii)  Prove that ZPSM =90°. ’ 3

Question 6 continues on page 10
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Question 6 continued

(©)

(ii)

(iii)

(iv)

Show that the solutions of z% + z° +1=0 are contained

in the solutions of z° —1=0

Sketch the nine solutions of z° ~1=0 on an Argand diagram
(about one third of a page in size)

Mark clearly on your diagram the six roots z;,z,,z23,24,2s, 2

of z6+z3+1=0

Show that the sum of the six toots of 2+22+1=01is given by

( 27 4 871')
2{ COS— +C0S— + COS —
9 9 9

End of Question 6
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Question 7 (15 marks) I7Jse a SEPARATE writing booklet.

(2)

®)

(©)

The equation x> —3x2 +5x-2=0 hasroots a,f,7.
()  Find a®+p%+y?

(i)  Hence find the number of real roots of the equation
x> -3x? +5x-2=0

A particle of mass m is projected vertically upwards with an initial velocity
u ms~! in a medium in which the resistance to the motion is proportional to
the square of the velocity v ms™} of the particle, that is miv? .

Let x be the displacement in metres of the particle above the point of
projection, O, so that the equation of motion is

X=- ( g+ kv2) .
Where g ms ™2 is the acceleration due to gravity.
-2

@) Assume k = 10 and that the acceleration due to gravity is 10 ms

1

Show that ¢ = —!—(tan_ u—tan”! v)
. 10

(i)  Find, in terms of u, the time taken for the particle to reach its
greatest height.

(iii)  Find an expression for the height, x, in terms of » and v.

(iv)  Find, in terms of u, the greatest height attained.

A sequence of numbers u,, is such that u; =2, u; =16 and
u, =8uy_1—15u, o for n23.

) Use the method of Mathematical Induction to show that u,, = 5" — 3"
fornz1.

5)1+] —2% 3n+i +1

(ii))  Hence show that uy +uy +uz+...+u, = 2

11
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Question 8 (15 marks) Use a SEPARATE writing booklet.
(@) Solve x*a"*=x : 2
(b)  Giventhat I, = fsecxtan” xdx, n=1,2,3...
)] Find I 1
(i)  Provethat I, = —‘/Z—ﬁ“—lln_z 3
n n
(in)  Evaluate I 1
(c) Two points, X and Y, are undergoing Simple Harmonic Motion on the
number plane.
1 Y moves along the y axis, oscillating between y =1cmand y=7cm with
period 7z seconds.
X moves along the x axis with centre of motion at x = 3cm and period
27 seconds.
Initially Y is stationary at y =7 and X is at its central position with
velocity of 2ems™.
@) Show that Y moves according to the equation y =4+ 3cos2t
and that X moves according to the equation x =3+ 2sin#
In both cases you should use the displacement-time equation
for SHM, x=b+acos(nt+ a), as your starting point. 5
(11) As X and Y move in SHM find the rate at which the area of
triangle OXY is changing when £ = STH 3

End of paper
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