Total marks – 120 Attempt Questions 1– 8

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (15 marks) Use a SEPARATE writing booklet.

(a) Evaluate
$$\int_0^1 \frac{e^x}{1+e^x} dx.$$
 2

(b) By completing the square, find
$$\int \frac{dx}{\sqrt{x^2 - 6x + 10}}$$
.

(c) Use integration by parts to find
$$\int x \log_e x \, dx$$
.

(d) Use the substitution
$$u = 1 - x$$
 to evaluate
$$\int_{-1}^{0} \frac{2 + x}{\sqrt{1 - x}} dx$$
.

(e) (i) Find real numbers
$$a$$
 and b such that
$$\frac{4x^2 - 5x - 1}{(x-3)(x^2+1)} \equiv \frac{a}{x-3} + \frac{bx+1}{x^2+1}.$$

(ii) Hence find
$$\int \frac{4x^2 - 5x - 1}{(x - 3)(x^2 + 1)} dx$$
.

Question 2 (15 marks) Use a SEPARATE writing booklet.

- (a) Let z = 1 + i and w = 1 2i. Find, in the form x + iy,
 - (i) zw

1

(ii) $\frac{1}{\overline{w}}$

(i)

(ii)

1

(b) Sketch the region in the Argand diagram where the inequalities

3

$$|z-2+2i| \le 2$$
 and $\frac{-\pi}{4} < \arg z < \frac{-\pi}{6}$

hold simultaneously

(c) It is given that 3-i is a root of $P(z) = z^3 + rz + 60$, where r is a real number.

1

,

State why 3+i is also a root of P(z).

Factorise P(z) over the real numbers.

2

(d) (i) Express $-2 + 2\sqrt{3}i$ in modulus-argument form

2

(ii) Hence evaluate $\sqrt[4]{-2+2\sqrt{3}i}$ in the form x+iy.

2

(e) By applying de Moivre's theorem and by also expanding $(\cos \theta + i \sin \theta)^4$, obtain expressions for $\cos 4\theta$ in terms of $\cos \theta$.

3

Question 3 (15 marks) Use a SEPARATE writing booklet.

The diagram shows the graph of $f(x) = \frac{3x}{x^2 - 4}$.

(i) Write down the equations of all the asymptotes.

Draw separate one-third page sketches of the graphs of the following:

(ii)
$$y = \frac{1}{f(x)}$$

(iii)
$$y = f(|x|)$$

$$(iv) y^2 = f(x)$$

(b) Let α , β and γ be the roots of $x^3 + 3x^2 + 4 = 0$.

(i) Find the polynomial equation whose roots are
$$\alpha^2, \beta^2$$
 and γ^2 .

(ii) Find
$$\alpha^3 \beta \gamma + \alpha \beta^3 \gamma + \alpha \beta \gamma^3$$
.

Question 3 continues on page 5

Question 3 continued

- (c) If a > b > 0, on a sketch of the curve $y = \sqrt{a^2 x^2}$ shade the region represented by the definite integral $\int_{b}^{a} \sqrt{a^2 x^2} dx$.
 - (ii) By using your diagram, or otherwise, show that

3

$$\int_{b}^{a} \sqrt{a^{2} - x^{2}} dx = \frac{a^{2}}{2} \cos^{-1} \left(\frac{b}{a}\right) - \frac{b}{2} \sqrt{a^{2} - b^{2}}.$$

2

Question 4 (15 marks) Use a SEPARATE writing booklet.

(a) Find the equation of the normal to the curve defined by $x^4 + 3xy - y^2 + 9 = 0$ at the point (-1,2).

(b) $P\left(cp,\frac{c}{p}\right)$ $Q\left(cq,\frac{c}{q}\right)$

The points $P\left(cp,\frac{c}{p}\right)$ and $Q\left(cq,\frac{c}{q}\right)$, $p \neq q$, lie on the same branch of the

hyperbola $xy = c^2$.

The tangents at P and Q meet at the point T.

- (i) Show that the equation of the tangent to the hyperbola at Q is $x + q^2y = 2cq$
- (ii) Show that T has coordinates $\left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$.
- (iii) If P and Q move so that pq = k, a constant, show that the locus of T is a straight line and give its equation in terms of k.

 Clearly state any restrictions on the locus.

Question 4 continues on page 7

Ouestion 4 continued

(c) The vertices of an acute-angled triangle ABC lie on a circle. The perpendiculars from A, B and C meet BC, AC and AB at D, E and F respectively.

The perpendiculars AD, BE and CF are produced to meet the circle at Q, R and S respectively.

(i) Using △AEB, state the relationship between ∠EAB and ∠EBA, giving reasons.
(ii) Prove that ∠ABE = ∠ACF.
(iii) Prove that AQ bisects ∠RQS.
(iv) Prove that the points E, F, B and C are concyclic.

2

3

Question 5 (15 marks) Use a SEPARATE writing booklet.

(a) The region bounded by $0 \le x \le 2$, $0 \le y \le 4x^2 - x^4$ is rotated about the y-axis to form a solid.

Use the method of cylindrical shells to find the volume of the solid.

- (b) $z_1 = 2\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$ and $z_2 = 2i$ are two complex numbers.
 - (i) On an Argand diagram draw the vectors \overrightarrow{OP} and \overrightarrow{OQ} to represent z_1 and z_2 respectively. Also draw the vectors representing $z_1 + z_2$ and $z_2 z_1$.
 - (ii) Find the exact values of $arg(z_1 + z_2)$ and $arg(z_2 z_1)$.
- (c)(i) Show that $f(x) = x\sqrt{4-x^2}$ is an odd function.
 - (ii) Hence evaluate $\int_{-2}^{2} (x-1)\sqrt{4-x^2} dx$
- (d)(i) Use the substitution $u = \frac{\pi}{4} x$ to show that $\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx = \int_0^{\frac{\pi}{4}} \ln\left(\frac{2}{1 + \tan x}\right) dx$
 - (ii) Hence find the exact value of $\int_0^{\frac{\pi}{4}} \ln(1+\tan x) dx$

1

2

Question 6 (15 marks) Use a SEPARATE writing booklet.

(a) The base of a solid is the region in the xy plane bounded by the circle $x^2 + y^2 = 9$. Each cross-section perpendicular to the x-axis is a square.

- (i) Show that the area of the square cross-section at x = k, where -3 < k < 3, is $4(9-k^2)$
- (ii) Hence find the volume of the solid.

(b)

The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

S is the focus (ae,0).

M the point where the tangent at P cuts the directrix, $x = \frac{a}{e}$.

- (i) Show that the equation of the tangent to the ellipse at P is $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$
- (ii) Show that M has coordinates $\left(\frac{a}{e}, \frac{b(e-\cos\theta)}{e\sin\theta}\right)$.
- (iii) Prove that $\angle PSM = 90^{\circ}$.

Question 6 continues on page 10

Question 6 continued

- (c) (i) Show that the solutions of $z^6 + z^3 + 1 = 0$ are contained in the solutions of $z^9 1 = 0$
 - (ii) Sketch the nine solutions of $z^9 1 = 0$ on an Argand diagram (about one third of a page in size)
 - (iii) Mark clearly on your diagram the six roots $z_1, z_2, z_3, z_4, z_5, z_6$ of $z^6 + z^3 + 1 = 0$
 - (iv) Show that the sum of the six roots of $z^6 + z^3 + 1 = 0$ is given by $2\left(\cos\frac{2\pi}{9} + \cos\frac{4\pi}{9} + \cos\frac{8\pi}{9}\right)$

2

Question 7 (15 marks) Use a SEPARATE writing booklet.

(a) The equation $x^3 - 3x^2 + 5x - 2 = 0$ has roots α, β, γ .

(i) Find
$$\alpha^2 + \beta^2 + \gamma^2$$

- (ii) Hence find the number of real roots of the equation $x^3 3x^2 + 5x 2 = 0$
- (b) A particle of mass m is projected vertically upwards with an initial velocity $u \text{ ms}^{-1}$ in a medium in which the resistance to the motion is proportional to the square of the velocity $v \text{ ms}^{-1}$ of the particle, that is mkv^2 .

Let x be the displacement in metres of the particle above the point of projection, O, so that the equation of motion is

$$\ddot{x} = -\left(g + kv^2\right).$$

Where $g \text{ ms}^{-2}$ is the acceleration due to gravity.

- (i) Assume k = 10 and that the acceleration due to gravity is 10 ms^{-2} . Show that $t = \frac{1}{10} \left(\tan^{-1} u - \tan^{-1} v \right)$
- (ii) Find, in terms of u, the time taken for the particle to reach its greatest height.
- (iii) Find an expression for the height, x, in terms of u and v.
- (iv) Find, in terms of u, the greatest height attained.
- (c) A sequence of numbers u_n is such that $u_1 = 2$, $u_2 = 16$ and $u_n = 8u_{n-1} 15u_{n-2}$ for $n \ge 3$.
 - (i) Use the method of Mathematical Induction to show that $u_n = 5^n 3^n$ 4 for $n \ge 1$.
 - (ii) Hence show that $u_1 + u_2 + u_3 + ... + u_n = \frac{5^{n+1} 2 \times 3^{n+1} + 1}{4}$.

Question 8 (15 marks) Use a SEPARATE writing booklet.

(a) Solve $x^x a^{\ln x} = x$

2

- (b) Given that $I_n = \int_0^{\frac{\pi}{4}} \sec x \tan^n x dx$, n = 1, 2, 3...
 - (i) Find I_1

1

(ii) Prove that $I_n = \frac{\sqrt{2}}{n} - \frac{n-1}{n} I_{n-2}$

(iii) Evaluate I_5

1

3

(c) Two points, X and Y, are undergoing Simple Harmonic Motion on the number plane.

Y moves along the y axis, oscillating between y = 1 cm and y = 7 cm with period π seconds.

X moves along the x axis with centre of motion at x = 3 cm and period 2π seconds.

Initially Y is stationary at y = 7 and X is at its central position with velocity of $2cms^{-1}$.

(i) Show that Y moves according to the equation $y = 4 + 3\cos 2t$ and that X moves according to the equation $x = 3 + 2\sin t$ In both cases you should use the displacement-time equation for SHM, $x = b + a\cos(nt + \alpha)$, as your starting point.

5

(ii) As X and Y move in SHM find the rate at which the area of triangle OXY is changing when $t = \frac{5\pi}{4}$

3

End of paper

Quantion | a =
$$\int_{1}^{1} \frac{e^{x}}{e^{x}} dx = \left[\ln(1+e^{x}) \right]_{0}^{1}$$

= $\ln(1+e) - \ln(1+1)$

= $\ln(1+e^{x}) - \ln(1+1)$

= $\ln(1+e^{x}) - \ln(1+e^{x})$

= $\ln(1+e^{x$

Į,

$$a_{j}(i) = (1+i)(1-2i)$$

$$= 1-2i+i-2i^{2}$$

$$= 3-i$$

(ii)
$$\frac{1}{12} = \frac{1}{(1+2i)} \cdot \frac{(1-2i)}{(1-2i)}$$

= $\frac{1-2i}{1+4}$

$$=2^{2}-62+9+1$$

$$(1 \cdot p(2) = (2+6)(2^2-62+10)$$

 $(con0+inio)^{4} = con40 + isi-40 \quad \text{log} \quad 0e-M.$ $(con0+inio)^{4} = con40 + 4co30 isi-0 + 6con^{2}0 isin^{2}0$ $+4con0 i^{3}sin^{3}0 + i^{4}sin^{4}0$ $= con^{4}0 - 6con^{2}0 sin^{2}0 + sin^{4}0 + i(4con^{3}0)inio-4con0sin^{2}0$ $= con40 - 6con^{2}0 sin^{2}0 + sin^{4}0$ $= con40 - 6con^{2}0(1-con^{2}0) + (1-con^{4}0)^{2}$ $= con40 - 6con^{2}0 + 6con^{4}0 + 1 - 2con^{4}0 + con40$ $= 8con^{4}0 - 8con^{2}0 + 1$

Quastion 3

a (i)
$$z=\pm 2$$
, $y=0$

(ii)

(iv)

$$\frac{1}{CG} = \frac{x^2-4}{3x}$$

$$\lim_{x\to\infty} \frac{x^2-4}{3x}$$

$$\int_{0}^{1} (i) (\sqrt{x})^{3} + 3(\sqrt{x})^{2} + 4 = 0$$

$$2(\sqrt{x}) = -(3x + 4)$$

$$2^{3} = (3x + 4)^{4}$$

$$= 9x^{4} + 24x + 16$$

$$2^{3} - 9x^{4} - 24x - 16 = 0$$

(ii) Gen (i)
$$2^{2}+\beta^{2}+3^{2}=9$$

But

$$2^{3}\beta + 2^{3}\beta + 2^{3}\beta + 2^{3}\beta = 2^{3}\beta + 2^{3}\beta = 2^{3}\beta$$

$$= -4+9$$

$$= -36$$

Question 4

2
$$x^4 + 3xy - y^2 + 9 = 0$$

Let $x^3 + 3xy = (2y - 3x)$ of $x^3 + 3yy = (2y - 2x)$ of x

ii)
$$x + p^{2}y = 2ep$$
 ... (D) $x + q^{2}y = 2eq$... (P-q) $y = \frac{2e}{p+q}$ Sub ... (P+q) $x + \frac{2ep}{p+q} = 2ep + 2epq$ (P+q) $x + 2ep = \frac{2ep}{p+q}$ $x = \frac{2ep}{p+q}$... $x = \frac{2ep}{p+q}$

T will pg=h & 5= Ze y= & dulinast.lia. But T is restricted to being "between" the bracker of the high and not including O. For wherechan of y= th and xy=c2 get 22 = c2 So, locus is that part of line y= to with domain (LAEB=90: - BELAC dela) LEAB = 90 - LEBA agle sur of a ... LACF=O (agle = do) (ii) L DACF : LACF = LABE C LAQS = LACF = 0 Cii) LROA = LRAB =0 : LROA = LAOS . . Aa buch LROS LBEC = LBEC= 90° (dela)

LBEC = LBEC= 90° (dela)

EFBC consolie (BC subled equal cyles a

Take Ili walled lallen cylindrical still though PA P(20,5) 2112 Vol shell SV = 2172 y dx Total vol = 1:- \$ 217xy 6x = 211) zyda = 211 \ 4x3-25 de = 211 [24-26] $=2\pi \left[16-\frac{64}{6}-(0-0)\right]$ = 211.16 = 32 cu. umb l (1) 2,+2, OR represents 2,+22 -1
Pa represents 2,+22 -1 (ii) < xOP = = 4 POQ = T-T = T Now orra so hombus (finallelegre will or =00) : OR buseds 2000 . LPOR = 5 : LXOR = 1 + 1 = 211 : ang (2+2) = 24 (iii) dag. of haber - purp. .. ang (2,-2,) = 24 + 1 = 19TT -)

$$f(x) = x\sqrt{4-x^{2}}$$

$$f(x) = -x\sqrt{4-(x)}$$

$$= -f(x)$$

$$f(x) = x\sqrt{4-x^{2}} \quad \text{and} \quad f(x) = \int_{0}^{x} \sqrt{4-x^{2}} dx - \int_{0}^$$

Question 6 a () For X-rection at x= k, bere is 25 = 2/9-k2 . . area of X-section = 4(9-k²) -(ii) Vol. X-suchard stier $SV = 4(9-x^2) Sx$ Total vol V= lim = 4(9-,2) fin = 8 \int 3(9-22) du $= 8 \left[9x - \frac{x^3}{3} \right]_0^3$ = 8 [27 - 9 - (0 - 9)] _ (= 144 sq. unih b (i) 盖+装引 DH.w.r. 6 2 2 + 27 2 =0 $\frac{dy}{dx} = -\frac{2u}{a^2} \cdot \frac{b^2}{2y} = -\frac{b^2 y}{a^2 y}$ At P, grad of larget = -braco = -broo - 1 Grad of layer is y-bsino = -bcmo (x-a cost) asino. y - absinto = -lesox tabesto bcoo. x + asi-0.y = ab(co-0+si-10) bcoox + asino.y = ab x c=0 + y s100 = 1 (ii) A+M, x= a ad 200 + yil-0=1 · de + 311-0 -1 y si-0 = 1 - c=0 = e-c=0 y = b (e-000) $M = \left(\frac{a}{e}, \frac{b(e-cos\theta)}{esi-\theta}\right)$

```
x3-32 +52-2=0
 (i) 2+B+8=3
     LB+28+B8=5
      x2+B+82= (2+B+8)2-2(2B+28+B8)
  (ii) Since Ene is negative, at least one of d', B2, F2 is negative
         is at least one of x, B, T is conflere. - 1
      Here 2 complex roots
ie 1 real root.
lo (i) =-(10+10+2)
        dy = -10 (1+v2)
          dt = 10(1+v2)
          t = -\frac{1}{10} \int \frac{dV}{1+V^2}
           t = - 10 ta-1 V + c
   What=0, v=u .. c= 10 ta-'u
              ...t = 10 (tan'u-tan'v) -1
   (ii) Greatest leight when V=0
                  :. t = to tan " W
                                     V de = -10 (1+v)
                                     dv = -10(1+v')
                                         dn = - 10(1+v2)
                                       x= -10 ( \frac{1+v}{v}
                                        x=-10.22(1+v2)+c
                       When x=0, v=u .. c= 1/20 h(1+u2)
                         N = \frac{1}{20} l \left( \frac{1 + u^2}{1 + v^2} \right)
   (iv) Greatest light when v=0 : x= to h (1+u2) - 1
```

Prove true for n=1 & n=2 · frue for n=1 & n=2 Assume time for n= 1,2,...le ie assume U1 = 5 k-3 k 2 le 3 h Rove true for n=h+1 of true for n=1,2,...h ie prove Upc+1 = 5k+1_3k+1 Now Uk+1 = 81/4 - 154/4-1 =8(5k-3k)-15(5k-1-3k-1) = 8x5k-3x5x5k-1 + 5x3x3k-1-8x3k = 8x5k-3x5k +5x3k-8x3k = 5x51 - 3x311 = 5kx1 - 3kx1 True for n=h+1 if true for n=1,2,...k But true for n=1,2 (ii) U, +U2+ .. +Un= 5'-3' +52-32+ . - +5n-3n $=(5'+5^2+...+5^n)-(3'+3^2+...+3^n)$ $= 5(5^{n}-1) - 3(3^{n}-1)$ = $5^{n+1}-5$ - $3^{n+1}+3$ $= 5^{n+1} - 5 - 2 \times 3^{n+1} + 6$ $= 5^{n+1} - 2 \times 3^{n+1} + 1$

a zahn=n i. In set alm = lux ln x2 + lnalis = ln x x lux + lux. laa = lux hn(n+ha-1)=0 hn=0 or xthe-1=0 x=1 o- n=1-ha. -1 & In= St secretain and (i) I, = 5\$ secretarion = [sec 2] To = sec # - sec O = [fen x secon] (ii) In = 5 secx ten's du - \(\frac{\tau_{1}}{4} \land \) \(\land u=ten >1 V= secx U= (n-1) tanzeix V'= secxtanx = [(= =) . sec= - 0] - (n-1) \[\frac{7}{24} \secrete \sc(1+\frac{1}{2}) \dy = (2 - (n-1) [= secrete 2 du -] secrete 3 du In = 1/2 - (n-1) [In-2-In] -1 = 1/2 - (n-1) In-2 - (n-1) In - n In = 12 - (n-1) In-2 In = (2 - (nu) In-2 - 1 $=\frac{(2)}{5} - \frac{4}{5} \left[\frac{(2)}{3} - \frac{2}{3} \right]$ = (2 - 4/2 + 8 (12-1) =312 - 412 + 812 - 8 = 7/2 -8 - 1

